Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Res ; : 1-7, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38384115

RESUMO

Endophytic fungi residing symbiotically in plant tissues are promising sources of bioactive natural products. This study explored the anti-inflammatory potential of an endophytic fungus isolated from the Brazilian medicinal plant Poincianella pluviosa (Sibipiruna). The extract from the endophyte FPD13 exhibited potential ex vivo anti-inflammatory effects by inhibiting prostaglandin E2 (PGE2) release by 75.22%. Phytochemical analysis using High-Performance Liquid Chromatography (HPLC), Nuclear Magnetic Resonance (NMR), and Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) enabled the isolation and identification of three compounds, including the macrolide Nigrosporolide, the phenyl-propanol Tyrosol, and the terpene Decarestrictine A. Morphological characteristics and Internal Transcribed Spacers region (ITS) sequencing classified fungus FPD13 as Nigrospora zimmermanii. The results reveal the anti-inflammatory potential and chemical diversity of P. pluviosa endophytes, warranting further investigation into the bioactivity and structure elucidation of their bioactive metabolites.

2.
Nat Prod Res ; : 1-8, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38006221

RESUMO

Many species from Myrtaceae have traditionally been used in traditional medicine as anti-inflammatory, antimicrobial, antidiarrheal, antioxidant and antirheumatic, besides in blood cholesterol reduction. In the present work, the anti-inflammatory activity of essential oils from eighteen Myrtaceae spp. were evaluated according to their ex-vivo anti-inflammatory activity in human blood, and the corresponding biomarkers were determined using untargeted metabolomics data and multivariate data analysis. From these studied species, six displayed anti-inflammatory activity with percentage rates of inhibition of PGE2 release above 70%. Caryophyllene oxide (1), humulene epoxide II (2), ß-selinene (3), α-amorphene (4), α-selinene (5), germacrene A (6), ß-bisabolene (7), α-muurolene (8), α-humulene (9), ß-gurjunene (10), myrcene (11), ß-elemene (12), α-cadinol (13), α-copaene (14), E-nerolidol (15) and ledol (16) were annotated as potential anti-inflammatory biomarkers. The results obtained in this study point to essential oils from species of the Myrtaceae family as a rich source of anti-inflammatory agents.

3.
Phytomedicine ; 120: 155060, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37717309

RESUMO

BACKGROUND: Species within the Ocotea genus (Lauraceae), have demonstrated an interesting profile of bioactivities. Renowned for their diverse morphology and intricate specialized metabolite composition, Ocotea species have re-emerged as compelling candidates for bioprospecting in drug discovery research. However, it is a genus insufficiently studied, particularly regarding anti-inflammatory activity. PURPOSE: To investigate the anti-inflammatory activity of Ocotea spp. extracts and determine the major markers in this genus. METHODS: Extracts of 60 different Ocotea spp. were analysed by an ex vivo anti-inflammatory assay in human whole blood. The experiment estimates the prostaglandin E2 levels, which is one of the main mediators of the inflammatory cascade, responsible for the classical symptoms of fever, pain, and other common effects of the inflammatory process. Untargeted metabolomics analysis through liquid chromatography coupled with high-resolution mass spectrometry was performed, along with statistical analysis, to investigate which Ocotea metabolites are correlated with their anti-inflammatory activity. RESULTS: The anti-inflammatory screening indicated that 49 out of 60 Ocotea spp. extracts exhibited significant inhibition of PGE2 release compared to the vehicle (p < 0.05). Furthermore, 10 of these extracts showed statistical similarity to the reference drugs. The bioactive markers were accurately identified using multivariate statistics combined with a fold change (> 1.5) and adjusted false discovery rate analysis as unknown compounds and alkaloids, with a majority of aporphine and benzylisoquinolines. These alkaloids were annotated with an increased level of confidence since MSE spectra were compared with comprehensive databases. CONCLUSION: This study represents the first bioprospecting report revealing the anti-inflammatory potential of several Ocotea spp. The determination of their anti-inflammatory markers could contribute to drug discovery and the chemical knowledge of the Ocotea genus.


Assuntos
Alcaloides , Lauraceae , Ocotea , Humanos , Bioprospecção , Alcaloides/farmacologia , Metabolômica , Anti-Inflamatórios/farmacologia , Dinoprostona , Extratos Vegetais/farmacologia
4.
Chem Biodivers ; 19(4): e202100966, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35267234

RESUMO

Hops (Humulus lupulus L.) are edible flowers commonly used to add flavour and aroma to beer, besides they have rich chemical diversity and medicinal potential. In this work, an ex vivo anti-inflammatory assay via the LPS-induced signalling pathway and metabolomics approaches were performed to evaluate the ability of hops to inhibit the production of prostaglandin E2 (PGE2) inflammatory mediator and analyze which metabolites produced by the nine different hop cultivars are potential anti-inflammatory markers. Columbus, Chinook and Hallertau Mittelfrüh hop cultivars yielded extracts with PGE2 release inhibition rates of 86.7, 92.5 and 73.5 %, respectively. According to the multivariate statistical analysis, the majority of the metabolites correlated with the activity were prenylated phloroglucinol and phenolic homologs. These results suggest promissory anti-inflammatory hop metabolites.


Assuntos
Humulus , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Dinoprostona/metabolismo , Humulus/metabolismo , Metabolômica , Fenóis/metabolismo
5.
Photochem Photobiol ; 96(1): 14-20, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400235

RESUMO

There is some evidence in the literature of the photocyclization reaction of Tagitinin C (1) to Tagitinin F (2). Compound 2 has high pharmacological potential, but it is not easy to obtain, while compound 1 is easily obtained from a widespread plant, Tithonia diversifolia. Among different reaction conditions monitored, one was found that allowed the cyclization of 1 into 2 in <15 min in a photo-dependent reaction. Scaling-up the photocyclization of the pure compound 1 into 2 demonstrated 100% yield, and the isolation of 2 from a UV-irradiated extract was eight-fold higher than the quantity isolated from the non-UV-irradiated extract. We were also able to better understand the process of photoconversion and determine methods to isolate and quantify these compounds, which are known for their important antitumoral activities among other important pharmacological properties.


Assuntos
Processos Fotoquímicos , Extratos Vegetais/química , Sesquiterpenos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Ciclização , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Sesquiterpenos/química , Espectrofotometria Ultravioleta , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA